Ultrasonic Signal Reconstruction Using Compressed Sensing
نویسندگان
چکیده
منابع مشابه
sar speckle reduction and image reconstruction using compressed sensing
speckle is a granular disturbance in coherent images such as synthetic aperture radar (sar) images, modeled as a multiplicative noise. this noise degrades the sar image and complicates the image exploitation using automated image analysis techniques. several approaches have been developed to reduce the effect of speckle noise. recently, the application of compressed sensing (cs) is explored in ...
متن کاملUnmanned aerial vehicle field sampling and antenna pattern reconstruction using Bayesian compressed sensing
Antenna 3D pattern measurement can be a tedious and time consuming task even for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this paper, with the aim of minimum duration of flight, a test scenario using unmanned aerial vehicles (UAV) is proposed. A pr...
متن کاملBacterial Community Reconstruction Using Compressed Sensing
Bacteria are the unseen majority on our planet, with millions of species and comprising most of the living protoplasm. We propose a novel approach for reconstruction of the composition of an unknown mixture of bacteria using a single Sanger-sequencing reaction of the mixture. Our method is based on compressive sensing theory, which deals with reconstruction of a sparse signal using a small numb...
متن کاملRandom Sampling and Signal Reconstruction Based on Compressed Sensing
Compressed sensing (CS) sampling is a sampling method which is based on the signal sparse. Much information can be extracted as little as possible of the data by applying CS and this method is the idea of great theoretical and applied prospects. In the framework of compressed sensing theory, the sampling rate is no longer decided in the bandwidth of the signal, but it depends on the structure a...
متن کاملA Reconstruction Algorithm for Compressed Sensing Noise Signal ?
The novel theory of Compressed Sensing (CS) reduces the samples of compressible signal sharply by information sampling. In order to improve reconstruction accuracy of noise signal for CS, a Singular Value Decomposition (SVD) noise signal reconstruction algorithm is presented in this paper. This algorithm decomposes the random measurement matrix, modifies the diagonal matrix Eigen values by mean...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mechanics and Materials
سال: 2016
ISSN: 1662-7482
DOI: 10.4028/www.scientific.net/amm.855.165